Twinned Identical Superdeformed Bands in the $A=80$ Region:
A Further Probe of Nuclear Deformation

(a) Oak Ridge National Laboratory, (b) University of Tennessee, (c) Oak Ridge Associated Universities, (d) Washington University, (e) Lawrence Berkeley National Laboratory, (f) University of Pittsburgh, (g) Florida State University, (h) Warsaw University, Poland

Since the report of the first superdeformed (SD) band in the medium-mass nucleus 83Sr [1], nearly twenty new SD bands have been discovered in the $A=80$ region. Here, we report the first observation of twinned identical SD bands in this region. Such SD bands, first observed in the $A=150$ region, may be attributed to the presence of $K = 1/2$ single-particle orbitals with decoupling parameter $a = 1$ near the Fermi surface [2].

Two experiments were performed at the LBNL 88" cyclotron with the Gammasphere spectrometer and the "Microball" charged-particle detector system. Fusion-evaporation reactions 58Ni(28,29Si, 3p)83,84Y at beam energies of 130 and 128 MeV, respectively, were used. Steps of data analysis included kinematical corrections of recoils, proper charged-particle gating, and removal of contaminating channels. Two of the SD bands established in 83Y and 84Y were found to have nearly identical γ-ray energies to two SD bands in their isotones 83Sr [3] and 84Sr, respectively. Figure 1 illustrates the identification of the band in 83Y by removing the contamination from 82Sr.

To understand the nature of the identical SD bands in the $A=80$ region, we have performed Nilsson-Strutinsky cranking calculations for several sets of shape parameters. The $[310]1/2^-$ proton orbital, which offers a natural explanation for these identical bands, approaches the Fermi surface for $Z \sim 39$ at deformations of $\beta_2 \simeq 0.5$. The location of this orbital, however, is very sensitive to the deformation parameters assumed in the calculations. The presence of these identical bands, therefore, may be used to further constrain the deformation parameters deduced from lifetime measurements. Lifetime measurements for a second SD band in 83Y indicate that its Q_1 value is similar to that for 82Sr, but smaller than the value for 84Zr [4].

*Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under the contract No. DE-AC05-96OR22446.

Fig. 1: Spectra obtained by double gating on transitions in the SD bands of 82Sr (4p gated, middle) and 83Y (3p with contamination from 4p, bottom). The normalized difference (top) shows the clean SD spectrum in 83Y. Transitions from ND bands are indicated by filled triangles (83Y), opened triangles (82Sr), and stars (82Y).