Due to the shape driving effect of the highly aligned $N = 5\ h_{11/2}$ intruder orbitals, a shell gap occurs in the Nilsson scheme at proton and neutron numbers $Z, N \approx 44$ leading to a predicted island of superdeformed (SD) prolate spheroids with $\beta_2 \approx 0.55$. Baktash et al. [1] reported the first observation of a discrete SD band in this mass region, which was tentatively assigned to 83Sr. Jin et al. [2] have identified a SD band in 84Zr and determined its quadrupole moment $(5.2(8)\ eb; \ \beta_2 \approx 0.53)$, thus providing direct evidence for the SD shell gap. Interestingly, the band in 84Zr was populated with 4% via the $2pn$ reaction channel, but only 2% via the $α2p$ channel in two different GAMMASPHERE experiments. Usually, the relative intensities of the SD bands in the $A \approx 80$ region amount to some 1.5%. Subsequently, multiple SD bands have been reported for 81Sr, 82Sr, and 82Y. All these bands reveal population and depopulation patterns and large dynamic moments of inertia $J^{(2)}$ typical for SD bands. The observed moments of inertia are generally in agreement with predictions of cranked shell model calculations suggesting two to four aligned particles in $h_{11/2}$ orbitals. However, discrete linking transitions between SD and normal-deformed (ND) states are yet to be observed in this mass region.

High-spin states in 83Zr were studied using the GAMMASPHERE array and the MICROBALL charged-particle detector system. Two superdeformed bands extending over nine to eleven transitions were identified in 83Zr. The quadrupole moment of one band was determined by the Residual Doppler Shift Method and is consistent with a quadrupole deformation of $\beta_2 \approx 0.5$. Both bands feed mainly ($\approx 85\%$) into the positive-parity yrast band around spin $I = 31/2$ though this band carries only $\approx 50\%$ of the total $γ$-ray flux towards the ground state. Near the bottom, the more intense SD1 band ($\approx 5\%$) branches out in a manner which suggests that it interacts with ND states. Fixing the excitation energy of SD1 by assuming it crosses the yrast ND band at a point where their side-feeding intensities are nearly equal (Fig. 1) creates the unusual situation where the SD1 band reapproaches ND states at low spins (Fig. 2). A similar situation is observed in the decay of SD1 in 81Sr [3].

Fig. 1: Intensities (full symbols) and side feedings (open symbols) of the two SD bands, the positive-parity yrast band, and all known ND bands in 83Zr.

Fig. 2: Routhians for SD1 and SD2 and the positive-parity yrast band in 83Zr.

