D. G. Sarantites, L. G. Sobotka and A. C. Wahl

Last Revision: April 18, 2006
Contents

1 Chemistry 435

1 Measurement and absorption of beta and gamma rays
 1.1 References .. 16
 1.2 Introduction and Prelab Assignment 16
 1.3 Experimental Procedure 17
 1.3.1 Use and calibration of the dosimeter 17
 1.3.2 Use of the radiation monitor 17
 1.3.3 Absorption of γ-rays 18
 1.3.4 Plateau curve for the β counter 18
 1.3.5 Counting statistics 18
 1.3.6 Absorption of ^{234}Pa β− particles in aluminum 19
 1.3.7 Counter dead time 19
 1.3.8 Backscattering .. 20
 1.4 Laboratory Report 20
 1.5 Lecture No. 1 ... 21

2 Preparation of samples for beta counting - Efficiency of the beta counter
 2.1 References .. 28
 2.2 Introduction and Prelab assignment 28
 2.3 Experimental procedure 29
 2.3.1 Counter Efficiency for ^{234m}Pa 30
 2.3.2 Cleaning Up .. 31
 2.4 Laboratory report .. 31
 2.5 Lecture No. 2 ... 32

3 α-Particle spectroscopy - The thorium decay series
 3.1 References .. 35
 3.2 Introduction and Prelab assignment 35
 3.3 Experimental Procedures 36
 3.3.1 The Surface-barrier detector 36
 3.3.2 ^{212}Bi Decay 36
 3.4 Lecture No. 3 ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Genetic relationship of 212Bi and 208Tl.</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>References</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Introduction and Prelab assignment</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental Procedures</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1</td>
<td>212Bi Decay</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Lecture No. 4</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>γ-Ray measurements with scintillation and semiconductor Ge detectors</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction and Prelab assignment</td>
<td>49</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental Procedures</td>
<td>50</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The well-type scintillation detector</td>
<td>50</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The NaI(Tl) detector and the Multichannel analyzer</td>
<td>53</td>
</tr>
<tr>
<td>5.3.3</td>
<td>The Ge detector</td>
<td>53</td>
</tr>
<tr>
<td>5.4</td>
<td>Lecture No 5</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Measurement of 14C radiation</td>
<td>60</td>
</tr>
<tr>
<td>6.1</td>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td>6.2</td>
<td>Introduction and Prelab assignment</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Experimental Procedures</td>
<td>61</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General</td>
<td>61</td>
</tr>
<tr>
<td>6.3.2</td>
<td>β-proportional counting</td>
<td>61</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Liquid scintillation counting</td>
<td>62</td>
</tr>
<tr>
<td>6.4</td>
<td>Lecture No. 6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>Neutron activation - Hot-atom chemistry - The Cyclotron</td>
<td>69</td>
</tr>
<tr>
<td>7.1</td>
<td>References</td>
<td>69</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduction and Prelab assignment</td>
<td>69</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental Procedures</td>
<td>70</td>
</tr>
<tr>
<td>7.3.1</td>
<td>General</td>
<td>70</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Irradiation of ethyl iodide</td>
<td>70</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Preparation of samples for counting</td>
<td>71</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Radioactivity measurements</td>
<td>71</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Determination of inorganic iodine</td>
<td>71</td>
</tr>
<tr>
<td>7.4</td>
<td>Correction for Decay during a Counting Period</td>
<td>72</td>
</tr>
<tr>
<td>7.5</td>
<td>Lecture No. 7</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Analysis by Neutron activation and by Isotope dilution</td>
<td>79</td>
</tr>
<tr>
<td>8.1</td>
<td>References</td>
<td>79</td>
</tr>
<tr>
<td>8.2</td>
<td>Introduction and Prelab assignment</td>
<td>79</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental Procedures</td>
<td>80</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Activation analysis</td>
<td>80</td>
</tr>
</tbody>
</table>
8.3.2 Isotope dilution 81
8.3.3 Analysis of unknown 82
8.4 Lecture No.8 83

9 Instrumentation for nuclear spectroscopy 86
 9.1 Introduction 86
 9.2 Experimental Procedures 86
 9.2.1 The Oscilloscope, Amplifiers and Discriminators 86
 9.2.2 The Pulse Height Analyzer (PHA) or The Computer as A PHA 87
 9.2.3 Timing Resolution 88
 9.2.4 The resolving time and the true random coincidence rates 89
 9.3 Lectures 9-10 90

10 Construction of a Decay scheme - The Coincidence method 95
 10.1 References 95
 10.2 Introduction and Prelab assignment 95
 10.3 Experimental Procedures 98
 10.3.1 Energy calibration of the pulse-height analyzer 98
 10.3.2 Energies and intensities of the γ rays from an “unknown” source ... 99
 10.3.3 The coincidence circuit 99
 10.3.4 The resolving time and the true random coincidence rates 99
 10.3.5 Spectra of γ-rays obtained in coincidence with selected peaks 100

11 Angular correlations of gamma rays in Cascade 103
 11.1 References 103
 11.2 Introduction and Prelab work 103
 11.3 Experimental Procedures 105
 11.3.1 The apparatus 105
 11.3.2 Directional Correlation of the Annihilation Radiation 105
 11.3.3 Directional correlation of the radiations from 207Bi decay 105
 11.3.4 Simple theory for a dipole-dipole γ − γ cascade 106
 11.4 Lecture No. 11 109

12 Solubility of PbI₂ by use of ¹³¹I tracer 113
 12.1 References 113
 12.2 Introduction and Prelab assignment 113
 12.2.1 Experimental Procedures 114
 12.3 Lecture No. 12 116
 12.3.1 The Idea 116
 12.3.2 Why use radioactivity? 116
 12.3.3 Solubility of PbI₂ 116
 12.3.4 Chemical equilibrium for the solubility of PbI₂ 117
II Physics 322

19 Project A: Construction of a Decay Scheme

19.1 Instrumentation for nuclear spectroscopy

19.1.1 Introduction

19.1.2 Experimental Procedures

19.2 Lectures 9-10

19.3 Construction of a Decay scheme - The Coincidence method

19.3.1 References

19.3.2 Introduction and Prelab assignment

19.3.3 Experimental Procedures

19.3.4 The resolving time and the true random coincidence rates

20 Fission

20.1 References

20.2 Introduction

20.2.1 Solid State Si Detector

20.2.2 Liquid Scintillator Neutron Detector

20.3 The Experiment

21 Positrons and Positronium: Measurements of the momentum distribution of delocalized electrons in solids; and of the speed of light in air and in lucite using the positronium annihilation quanta

21.1 Abstract:

21.2 References

21.3 Background

21.4 Experiment

21.5 The speed of light (γ-rays) in air and in a dense medium

22 X-ray Fluorescence with Ge

22.1 Background

22.2 Experimental procedure

22.2.1 Setting up Ge photon Spectrometer

22.2.2 Calibration of Ge Photon Spectrometer

22.2.3 Data collection and analysis with phantoms of known Pb concentration

22.2.4 Data collection and analysis with phantom of unknown Pb concentration

23 X-Ray fluorescence with a Si-PIN detector

23.1 Pre-lab questions

23.2 The Si detector
23.3 The X-Ray generation .. 210
 23.3.1 Excitation with radioactive sources 210
 23.3.2 Excitation with an X-Ray Generator with a Pyroelectric Crystal .. 210
23.4 Experimental procedure for Si X-ray Fluorescence .. 214
 23.4.1 1) Choose the excitation method. 214
 23.4.2 2) Create elemental calibrations. 214
 23.4.3 Analysis of unknown samples 217
 23.4.4 Self absorption for L-X rays .. 217

24 Mössbauer spectroscopy- An undergraduate laboratory experiment.. 231
 24.1 Pre-laboratory assignment 231
 24.2 Background ... 231
 24.3 Experimental procedure 238
 24.3.1 Setting up Si (PIN) photon Spectrometer 238
 24.4 Sample data analysis 240
 24.4.1 Magnetic hyperfine splitting only-The Fe metal as standard .. 240
 24.4.2 Quadrupole splitting only - (Ferrous sulfate) 242
 24.4.3 The α—Fe₂O₃ analysis .. 243
 24.4.4 Other samples ... 246
 24.5 Problems ... 246
 24.5.1 Line intensities and angular correlation effects 247
 24.6 Appendix A: Recoilless efficiency 250
 24.7 Appendix C: Some useful constants and conversions 250
 24.8 Appendix D: Quadrupole moments 251
 24.8.1 Hyperfine interactions .. 254
 24.8.2 The quadrupole interaction 257
 24.9 Appendix E: Nuclear magnetic moments 258
 24.10 Appendix F: Chemical- or Isomer-Shift Expression 262

III Instructions to the TA .. 268

25 Appendix-Instructions for the TA .. 269
 25.1 Measurement and absorption of beta and gamma rays 274
 25.2 Preparation of Samples for Beta Counting-Efficiency of the Beta Counter 277
 25.3 α—Particle detection - The thorium decay series 279
 25.4 Genetic relationship of ⁴¹⁷Bi and ²⁰⁸Tl - Fast recoil chemistry 282
 25.5 γ-Ray measurements with scintillation and semiconductor Ge detector 283
 25.6 Measurement of ¹⁴C radiation 285
 25.7 Neutron activation - Hot atom chemistry - The Cyclotron 287
 25.8 Analysis by Neutron activation and Isotope dilution 289