Onset of Deformation in 60Ni.1 W.D. WEINTRAUB, H.Q. JIN, W. REVIOL, L.L. RIEDINGER, \textit{Univ. of Tennessee}, C. BAKTASH, M.J. BRINKMAN, D.J. DEAN, C.-H. YU, \textit{ORNL}, M. DEVLIN, D.R. LAFOSSE, D.G. SARANTITES, \textit{Washington Univ.}, M. LEDDY, \textit{Univ of Manchester}, I.Y. LEE, A.O. MACCHIAVELLI, \textit{LBNL}, D. RUDOLPH, \textit{Ludwig-Maximilians-Universität München} — High-spin states in 60Ni were populated using the 28Si(36Ar,4p) reaction with beam energy of 136 MeV. Gammasphere at LBNL was used in conjunction with Microball to measure gamma rays selected for the charged-particle exit channels of interest. A total of 2 billion events was recorded, with the 4p channel to 60Ni representing approximately 11\% of the data. In our analysis, the previously known level scheme2 has been extended up to energy and spin of 20 MeV and 20 \hbar. The multiplicity of levels up to $I = 10$ are well explained by shell-model calculations including the $g_{9/2}$ single-particle orbital into the fp-shell configuration space. At higher spins, evidence for rotational-like behavior increases. Two apparently rotational structures have large $M1$ values and are perhaps shears bands, likely involving one $g_{9/2}$ particle. Furthermore, an $E2$ sequence with a larger moment of inertia is observed that could correspond to other deformed structures in the region, involving two $g_{9/2}$ particles. Comparisons to calculations will be given.

1Supported by the U.S. Department of Energy.
2G. Moyat \textit{et al.}, Nuclear Physics \textbf{A318}, 236 (1979).

Walter Reviol
wreviol@utk.edu
University of Tennessee
Member ID: M60007870

Date submitted: January 19, 1998

Electronic form version 1.2