In-beam Spectroscopy of 68Se. S.M. FISCHER, D.P. BALAMUTH, P. HAUSLADEN, University of Pennsylvania, C.J. LISTER, D.J. BLUMENTHAL, J. SCHWARTZ, Argonne National Laboratory, M.J. LEDDY, University of Manchester, D.G. SARANTITES, M. DEVLIN, Washington University. — Nuclei with N≈Z in the A=70 mass region exhibit rapid changes in shape with the addition or subtraction of one or two particles; shape coexistence has been demonstrated in slightly lighter systems. Experimental investigation of these N≈Z nuclei has proven to be quite difficult, principally due to very low cross sections for relevant fusion-evaporation reactions. To date only three transitions have been reported \(^1\) in 68Se. In the present work, 68Se was produced via the 40Ca(36Ar,2\(\alpha\)) reaction at a beam energy of 140 MeV. The Gammasphere and Microball arrays were used to detect \(\gamma\)-rays of fold 3 and higher in coincidence with evaporated charged particles. Doppler corrections were applied on an event-by-event basis to \(\gamma\)-rays in coincidence with 2 \(\alpha\) particles, and a careful subtraction of feedthrough channels was performed. Two previously identified transitions in 68Se have been confirmed and at least seven new transitions have been observed. The proposed level scheme, based on coincidence relationships and \(\gamma\)-ray angular distributions, will be discussed.